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Abstract

This paper presents analytical solutions of consolidation for poroelastic and multilayered half space, and anisotropy

of the permeability and the compressibility of the pore fluid are considered. State vector method together with Laplace–

Hankel transform techniques are used to solve the basic governing equations, and obtain the transfer matrix in a clearly

arranged way. Forward and backward transfer matrix techniques are utilized in the analytical formulation of solutions

for the multilayered half space. A numerical inversion scheme of Crump’s method is adopted to obtain time-domain

solution. Numerical results are presented for a single homogeneous soil layer and a multilayered half space, and they

illustrate the influences of the anisotropy of permeability and the compressibility of the pore fluid on the consolidation

of the soils.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress-induced flow of interstitial fluid in porous media has been suggested as accounting for a

variety of phenomena encountered in geomechanics. The general theory of a porous media taking into

account the coupling between the solid and fluid stresses and strains is presented in the pioneering work of

Biot (1941).

In many cases, natural soils have been created through a sedimentation process that determines a typical

soil fabric in which horizontal stratification planes can be distinguished. This process gives the soil mass a

marked degree of anisotropy so that the permeability is different in horizontal and vertical directions. Soil

layers which are created in different geological conditions may have apparently different behavior of
poroelasticity and permeability. Therefore it is necessary to take into account the anisotropy of perme-

ability and layering behavior of the media.
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Compressibility of the pore fluid is important, and it is considered in this paper under the following two

cases of consolidation:

(1) Consolidation of soil with high saturation degree. Many practical problems are involved with the

consolidation of partially saturated soil, such as earth dam and embankment built of three-phase com-
pacted clay, and landfills including or producing gas (Wentz, 1989). An important and frequently

encountered special case is that in which the degree of saturation is high (approximately more than 70%) so

that the liquid phase becomes continuous while the gas phase becomes discontinuous and occluded in the

form of bubbles in the liquid phase, and the surface tension maintains the differential pressure between pore

gas and pore water pressure (Pietruszczzak and Pande, 1996). As the saturation degree is further increased

the bubbles and pore water behave as a ‘‘homogeneous compressible fluid’’ flowing under the pore water

pressure gradient, surface tension effect appears to be unimportant, and this condition prevails at degree of

saturation greater than about 85% (Koning, 1963; Sparks, 1963; Schuurman, 1966; Chang and Duncan,
1983; Okusa, 1985).

With neglect of gas solubility in water which appears to be justified, the compressibility of the pore fluid

mixture b is given by (Pietruszczzak and Pande, 1996)
b ¼ 1

K
¼ Sr
Kw

þ 1� Sr
Pa0 � T

3qv

Srffiffiffiffiffiffiffi
1�Sr

p
; Sr > 70%; ð1aÞ
where K and Kw are the average bulk moduli of pore fluid mixture and air free water, respectively, Sr is pore
water saturation degree, Pa0 is the total gas pressure, T is the surface tension force, and qv is the average

pore size.

By ignoring the effect of surface tension (Pa0 ¼ Pw0), the compressibility of the mixture is approximately

represented by (Koning, 1963; Schuurman, 1966; Fredlund, 1976; Okusa, 1985)
b ¼ 1

K
¼ Sr
Kw

þ 1� Sr
Pw0

; Sr > 85%; ð1bÞ
where Pw0 is absolute pore water pressure.

A simple analysis by Verruijt (1969) indicates an upper bound for the compressibility of the pore fluid

mixture
b ¼ 1

K
¼ 1

Kw
þ 1� Sr

Pw0
; 1� Sr � 1; ð1cÞ
this condition prevails at degree of saturation with 1� Sr � 1, and it will be applied in our following

analysis. This condition has been applied by many other researchers (e.g. Madsen, 1978; Yamamoto et al.,

1978; Jeng and Seymour, 1997; Yang and Sato, 2001). From Eq. (1c), it can readily be shown that even a

very small amount of gas in soil will dramastically reduce the bulk modulus of fluid.

The importance of pore fluid compressibility for consolidation problem has been demonstrated by many

researchers. Cheng and Liggett (1984) concluded that compressibility of pore fluid would drastically alter
the soil behavior in both the consolidation process and the pore pressure distribution. Booker and Carter

(1987) demonstrated that the compressibility of the pore fluid can have a significant influence on the rate of

consolidation of the soil around the point sink and thus on the settlement of the surface of the half space.

Yue et al. (1994) presented that the presence of a compressible pore fluid reduces the generation of excess

pore water pressure in the poroelastic seabed layer. Besides, its significance has also been indicated in

consolidation problem under ocean wave loading (Madsen, 1978; Okusa, 1985; Jeng and Seymour, 1997) or

earthquake excitation (Yang and Sato, 2001).

(2) Consolidation of saturated porous rock. For the media of water-saturated rock, pore water is not
effectively incompressible. In many cases, the stiffness of the porous rock is much larger than that of the air

free water, therefore the compressibility of pore fluid should be considered (Skempton, 1954).
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Analytical solutions related to a poroelastic medium consolidation have been obtained by many

researchers including Gibson et al. (1970), Booker (1974), Booker and Small (1982a,b, 1987), Vardoulakis

and Harnpattanapanich (1986), Harnpattanapanich and Vardoulakis (1987) and Senjuntichai and Ra-

japakse (1995). In almost all these investigations, it was assumed that the permeability is isotropic, the pore
fluid is incompressible, and the medium has finite thickness. Such assumption made it impossible to ana-

lytically examine the roles of anisotropy of permeability and compressibility of pore fluid on the consoli-

dation process, besides, the assumption that the poroelastic medium has finite thickness with completely

permeable or impermeable hydraulic base and completely rigid and rough mechanical base is not realistic

for most real cases.

In this paper our study will be focused on the development of the analytical solutions for the consoli-

dation of multilayerd poroelastic media with anisotropic permeability, compressible pore fluid (1� Sr � 1)

and infinite thickness. Firstly, an efficient state vector method (Zhong et al., 1995; Chen et al., 1998; Chen
and Zhao, 1999; Chen, 2003) is adopted to re-express the basic governing equations as two matrix ordinary

differential equations with respect to two state vectors composed of displacement, stress, pore water

pressure and superficial velocity of the pore fluid. By applying Laplace–Hankel transforms to the matrix

differential equations and employing Cayley–Hamilton theorem, the matrix equations are solved and

transfer matrix between state vectors at different depths (z) is obtained in Laplace–Hankel transform do-

main. Secondly, forward and backward transfer matrix methods are utilized to get the analytical solutions

for a multilayered poroelastic media. Thirdly the inversions of Hankel and Laplace transforms should be

performed to obtain the solutions in the physical domain. A numerical inversion scheme of Crump’s
method is adopted to obtain time-domain solution. Finally, based on the analytical solutions, numerical

results are presented to study a single soil layer and examine the influence of anisotropy of permeability and

compressibility of pore fluid on consolidation, a multilayered half space is investigated in order to show the

efficiency of the present study.

Therefore, the main objectives of this paper can be summarized as follows: (1) to present an efficient

formulation for the development of analytical solutions governing the consolidation problem; (2) to extend

the analytical modeling of consolidation to include the anisotropy of permeability and compressibility of

pore fluid; and (3) to extend the analytical modeling of media with finite thickness to infinite half space.
2. Governing equations and solutions

Consider a homogeneous poroelastic layer with high saturation degree and infinite in horizontal extent.
The cylindrical polar coordinate system ðr; z; hÞ is here used. The load qz, qrz, qhz is applied at depth h below
the surface of the layer with thickness H , and the layer extends a further distance H � h below the loading

surface (see Fig. 1).
r
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q

O

z

rzq qθz

Fig. 1. A homogeneous poroelastic layer subjected to external load.



4570 G.J. Chen / International Journal of Solids and Structures 41 (2004) 4567–4586
2.1. Static equilibrium equations

In the absence of increase in body forces, static equations of equilibrium with respect to conventional

cylindrical polar coordinate system take the form
orr
or þ

rr�rh
r þ osrz

oz þ 1
r
osrh
oh ¼ 0;

osrz
or þ

srz
r þ

orz
oz þ 1

r
oszh
oh ¼ 0;

osrz
or þ

srz
r þ

orz
oz þ 1

r
oszh
oh ¼ 0;

9>=>; ð2Þ
where rr, rh, rz are the total stresses taken as positive in tension and szr, srh, szh are the shear stresses.
2.2. Constitutive equations

Under the hypothesis that the pore water and pore gas are mixed as a ‘‘homogeneous pore fluid’’, soil

with high saturation degree can be regarded as a quasi-two-phase medium, therefore constitutive equations
take the form
rr þ p ¼ 2l ou
or þ m

1�2m
ou
or þ 1

r
ov
oh þ u

r þ ow
oz

� �� 	
;

rh þ p ¼ 2l 1
r
ov
oh þ u

r

� �
þ m

1�2m
ou
or þ 1

r
ov
oh þ u

r þ ow
oz

� �� 	
;

rz þ p ¼ 2l ow
oz þ m

1�2m
ou
or þ 1

r
ov
oh þ u

r þ ow
oz

� �� 	
;

szr ¼ lðou
oz þ ow

orÞ; szh ¼ lðov
oz þ 1

r
ow
ohÞ; srh ¼ lðov

or � v
r þ 1

r
ou
ohÞ;

9>>>>=>>>>; ð3Þ
where p is the excess average pressure of the ‘‘homogeneous pore fluid’’ taken as positive in compression,
u, v, w are the bulk displacement components in the radial, tangential and vertical directions respectively,

l is the shear modulus and m is Poisson’s ratio.
2.3. Mass conservation law

For transient flow with different permeability between horizontal and vertical directions, the pore fluid

mass conservation equation of a quasi-static porous medium is given by
o

ot
ou
or



þ u
r
þ 1

r
ov
oh

þ ow
oz

�
þ nb op

ot
¼ 1

cw
k0r

o2p
or2


�
þ 1

r
op
or

þ 1

r2
o2p

oh2

�
þ k0z

o2p
oz2



; ð4Þ
where k0z, k
0
r denote the vertical and horizontal permeability coefficients, respectively, n is porosity, cw is the

unit weight of pore water, t represents time.
2.4. Solutions formulation

Define another four variables as
uv ¼ 1
r

oðruÞ
or þ ov

oh

h i
; uh ¼ � 1

r
oðrvÞ
or � ou

oh

h i
;

svz ¼ 1
r

oðrszrÞ
or þ oszh

oh

h i
; shz ¼ � 1

r
oðrszhÞ
or � osrz

oh

h i
:

9>=>; ð5Þ
By suitably manipulating Eqs. (2)–(5), and applying Laplace transform, we can obtain the following

expressions:
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o~uv
oz ¼ �r2

h~wþ 1
l~svz;

o~rz
oz ¼ �~svz;
o~w
oz ¼ 1�2m

2lð1�mÞ ~rz þ 1�2m
2lð1�mÞ ~p � m

1�m ~uv;

o~svz
oz ¼ �r2

h
m

1�m ~rz þ 1�2m
1�m ~p þ

2l
1�m ~uv

� �
;

o~p
oz ¼ � 1

kz
~vz;

o~vz
oz ¼ c2kzr2

h~p � s 1�2m
2lð1�mÞ ~rz þ 1�2m

2lð1�mÞ ~p þ 1�2m
1�m ~uv

� �
� snb~p;

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ð6aÞ
o~uh
oz ¼ 2

f ~shz;
o~shz
oz ¼ � a�b

2
r2

h~uh;

)
ð6bÞ
where an overbar ‘‘
’’ is hereafter used to denote the Laplace transform of a given variable, s is the Laplace

variable, r2
h ¼ o2

or2 þ 1
r

o
or þ 1

r2
o2

oh2
, kr ¼ k0r=cw, kz ¼ k0z=cw and c2 ¼ kr=kz.

Hereafter we expand the following variables into the Fourier series as:
u;w; uvf g ¼
X1
m¼0

um;wm; uvmf g cosmh; v; uhf g ¼
X1
m¼0

vm; uhmf g sinmh; ð7aÞ
rr; rh; rz; srz; svzf g ¼
P1
m¼0

rrm; rhm;rzm; srzm; svzmf g cosmh;

srh; szh; shzf g ¼
P1
m¼0

srhm; szhm; shzmf g sinmh;

9>>=>>; ð7bÞ
p; vzf g ¼
X1
m¼0

pm; vzmf g cosmh; ð7cÞ
qz; qrz; qvzf g ¼
X1
m¼0

qzm; qrzm; qvzmf g cosmh; qhz; qhzf g ¼
X1
m¼0

qhzm; qhzmf g sinmh; ð7dÞ
where qvz ¼ 1
r

oðrqrzÞ
or þ oqhz

oh

h i
, qhz ¼ � 1

r
oðrqhzÞ

or � oqrz
oh

h i
.

By substituting Eqs. (7a)–(7c) into Eqs. (6a) and (6b), we get the following two matrix partial differential

equations:
o

oz
eXmðr; z; sÞ ¼ ~Amðr; sÞeXmðr; z; sÞ; ð8aÞ
o

oz
eYmðr; z; sÞ ¼ ~Bmðr; sÞeYmðr; z; sÞ; ð8bÞ
where eXmðr; z; sÞ ¼ ~uvmðr; z; sÞ; ~rzmðr; z; sÞ; ~pmðr; z; sÞ; ~wmðr; z; sÞ;~svzmðr; z; sÞ;~vzmðr; z; sÞ½ �T, and eYmðr; z; sÞ ¼
~uhmðr; z; sÞ;~shzmðr; z; sÞ½ �T, and matrices ~Amðr; sÞ and ~Bmðr; sÞ take the form
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~Amðr; sÞ ¼

0 0 0 �r2
m

1
l 0

0 0 0 0 �1 0

0 0 0 0 0 � 1
kz

� m
1�m

1�2m
2lð1�mÞ

1�2m
2lð1�mÞ 0 0 0

� 2l
1�mr2

m � m
1�mr2

m
1�2m
1�m r2

m 0 0 0

�s 1�2m
1�m �s 1�2m

2lð1�mÞ c2kzr2
m � s 1�2m

2lð1�mÞ þ nb
� �

0 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
; ð9aÞ

~Bmðr; sÞ ¼
0 1

l

�lr2
m 0


 �
; ð9bÞ
where r2
m ¼ o2

or2 þ 1
r

o
or � m2

r2 .

By performing Hankel transforms to Eqs. (9a) and (9b), we get two single-order ordinary differential

matrix equations in the Laplace–Hankel transform domain
d

dz
Xmðn; z; sÞ ¼ Aðn; sÞXmðn; z; sÞ; ð10aÞ

d

dz
Ymðn; z; sÞ ¼ Bðn; sÞYmðn; z; sÞ; ð10bÞ
where Xmðn; z; sÞ ¼ �uvmðn; z; sÞ; �rzmðn; z; sÞ; �pmðn; z; sÞ; �wmðn; z; sÞ;�svzmðn; z; sÞ;�vzmðn; z; sÞ½ �T, Ymðn; z; sÞ ¼
�uhmðn; z; sÞ;�shzmðn; z; sÞ½ �T, and
Xmðn; z; sÞ ¼
Z 1

0

rJmðnrÞeXmðr; z; sÞdr; eXmðr; z; sÞ ¼
Z 1

0

nJmðnrÞXmðn; z; sÞdn; ð11aÞ

Ymðn; z; sÞ ¼
Z 1

0

rJmðnrÞeYmðr; z; sÞdr; eYmðr; z; sÞ ¼
Z 1

0

nJmðnrÞYmðn; z; sÞdn ð11bÞ
where JmðnrÞ is the first kind of Bessel function of order m, and
Aðn; sÞ ¼

0 0 0 n2 1
l 0

0 0 0 0 �1 0

0 0 0 0 0 � 1
kz

� m
1�m

1�2m
2lð1�mÞ

1�2m
2lð1�mÞ 0 0 0

2l
1�m n

2 m
1�m n

2 � 1�2m
1�m n2 0 0 0

�s 1�2m
1�m �s 1�2m

2lð1�mÞ �c2kzn
2 � s 1�2m

2lð1�mÞ þ nb
� �

0 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
; ð12aÞ

Bðn; sÞ ¼ 0 1
l

ln2 0


 �
: ð12bÞ
Assuming there is no external load between depth z1 and depth z2, solutions of the ordinary differential
matrix Eqs. (10a) and (10b) can be written as
Xmðn; z2; sÞ ¼ Tðn; z2 � z1; sÞXmðn; z1; sÞ; ð13aÞ

Ymðn; z2; sÞ ¼ Sðn; z2 � z1; sÞYmðn; z1; sÞ; ð13bÞ
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where Tðn; z; sÞ ¼ exp zAðn; sÞ
� 	

and Sðn; z; sÞ ¼ exp zBðn; sÞ
� 	

are named transfer matrices because they

transfer the solutions from depth z1 to the depth z2 (i.e. calculates the state vectors Xðn; z2; sÞ and Yðn; z2; sÞ
from the state vectors Xðn; z1; sÞ and Yðn; z1; sÞ).

The proper equations of the matrices Aðn; sÞ and Bðn; sÞ are
ðk2
A � n2Þ2 k2

A

�
� c2n2



þ sð1� 2mÞ
2lð1� mÞkz

þ snb
kz

��
¼ 0; ð14aÞ

k2
B � n2 ¼ 0; ð14bÞ
respectively, where kA; kB are eigenvalues of matrices Aðn; sÞ and Bðn; sÞ, respectively. So matrix Aðn; sÞ has
two equal eigenvalues n, two equal eigenvalues �n, and two eigenvalues �g, where
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2n2 þ sð1� 2mÞ

2lð1� mÞkz
þ snb
kz

s
; ð15Þ
and matrix Bðn; sÞ has two eigenvalues �n.
According to Cayley–Hamilton theorem, transfer matrices T and S can be expressed as
T ¼ exp½zAðn; sÞ� ¼ a0E6�6 þ a1Aþ a2A
2 þ a3A

3 þ a4A
4 þ a5A

5
; ð16aÞ

S ¼ exp½zBðn; sÞ� ¼ b0E2�2 þ b1B: ð16bÞ

The equations which are obtained by substituting the eigenvalues kA or kB for the matrices Aðn; sÞ and

Bðn; sÞ in Eqs. (16a) and (16b) should also be tenable, therefore we have
chðgzÞ
shðgzÞ
chðnzÞ
shðnzÞ
z � chðnzÞ
z � shðnzÞ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

1 0 g2 0 g4 0

0 g 0 g3 0 g5

1 0 n2 0 n4 0

0 n 0 n3 0 n5

0 1 0 3n2 0 5n4

0 0 2n 0 4n3 0

26666664

37777775
a0
a1
a2
a3
a4
a5

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð17aÞ

b0 ¼ chnz; b1 ¼
shnz
n

: ð17bÞ
Transfer matrices T and S are therefore obtained by substituting a0, a1, a2, a3, a4, a5 (solved from Eq.

(17a)) into Eq. (16a), and (17b) into Eq. (16b). Expressions of the elements of T and S are included in

Appendix A.

As an example, we apply the solutions in Eqs. (13a) and (13b) in the soil layer shown in Fig. 1:

(1) Domain 1 (which is bounded by 06 z6 h)
By utilizing the forward transfer matrix technology, we get
Xmðn; z; sÞ ¼ Tðn; z; sÞXmðn; 0; sÞ; Ymðn; z; sÞ ¼ Sðn; z; sÞYmðn; 0; sÞ: ð18Þ

(2) Domain 2 (which is bounded by h < z6H )

By utilizing the backward transfer matrix technology, we get
Xmðn; z; sÞ ¼ Tðn; z� H ; sÞXmðn;H ; sÞ; Ymðn; z; sÞ ¼ Sðn; z� H ; sÞYmðn;H ; sÞ: ð19Þ
The solution at each given point of the domain by using Eqs. (18) and (19) requires the knowledge of the

state vectors of the transformed variables at the top of the layer, Xmðn; 0; sÞ, Ymðn; 0; sÞ and at the base of
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the layer, Xmðn;H ; sÞ, Ymðn;H ; sÞ. For the case in Fig. 1, six variables should be known as boundary

conditions, the remaining six variables must be calculated by the following two relationships that exist

between the state vectors Xðn; 0; sÞ, Yðn; 0; sÞ and Xðn;H ; sÞ, Yðn;H ; sÞ

Xmðn;H ; sÞ ¼ Tðn;H ; sÞXmðn; 0; sÞ þ Tðn;H � h; sÞQXmðn; sÞ; ð20aÞ
Ymðn;H ; sÞ ¼ Sðn;H ; sÞYmðn; 0; sÞ þ Sðn;H � h; sÞQYmðn; sÞ; ð20bÞ
where QXmðn; sÞ ¼ 0; �qzmðn; sÞ; 0; 0; �qvzmðn; sÞ; 0f gT and QYmðn; sÞ ¼ 0; �qhzmðn; sÞf gT.
Note that, in the following, we will simplify Xmðn; z; sÞ;Tðn; z; sÞ, Ymðn; z; sÞ;Sðn; z; sÞ, etc. into XmðzÞ,

TðzÞ, YmðzÞ, SðzÞ, etc.
3. Solutions of multilayered poroelastic half space

The problem considered here is a multilayered poroelastic half space with high saturation degree and

loaded by qz, qrz, qhz at depth hq below the surface (see Fig. 2). The multilayered half space consists of nþ 1

perfectly bonded poroelastic layers which are infinite in horizontal extent. Each layer is homogeneous, the

load is located in the ith soil layer occupying the region Zi�1 6 z6 Zi with thickness Hi ¼ Zi � Zi�1. For layer
j ¼ 1; 2; . . . ; n, it has the thickness Hj, the shear modulus lj, Poisson’s ratio mj, compressibility of pore fluid

bj and the permeability parameters krj, kzj, c2j . For layer nþ 1, it occupies the region Zn6 z < 1, and has the

poroelastic parameters lnþ1, mnþ1, bnþ1 and the permeability parameters kr;nþ1, kz;nþ1, c2nþ1.

3.1. Boundary conditions

3.1.1. z ¼ 0

The surface z ¼ 0 of the multilayered half space is considered as traction free, which takes the following
mechanical boundary conditions in the transform domain
�rzmðn; 0; sÞ ¼ �svzmðn; 0; sÞ ¼ �shzmðn; 0; sÞ ¼ 0; ð21aÞ
Fig. 2. A multilayered poroelastic half space subjected to external load.
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for a permeable surface, it has the following hydraulic boundary condition
�pmðn; 0; sÞ ¼ 0; ð21bÞ

while for an impermeable surface, it has the following hydraulic boundary condition
�vzmðn; 0; sÞ ¼ 0: ð21cÞ
3.1.2. z ¼ Zn
The half space extends to infinity, in which the displacement and water flow velocity fields should reduce

to zero and the stresses and pore pressure should be bounded as z! þ1. Then in order to satisfy such

natural regularity conditions, we have the following equations for vectors XðZnÞ, YðZnÞ:

unþ1XðZnÞ ¼ 0; wnþ1YðZnÞ ¼ 0; ð22Þ
where the matrices unþ1 (dimensions 3 · 6) andwnþ1 (dimensions 1· 2) are derived and defined in Appendix B.

For the limiting case of lnþ1 ! 1, substituting lnþ1 ! 1 into (22) yields
�uvmðn; Zn; sÞ ¼ �wmðn; Zn; sÞ ¼ �uhmðn; Zn; sÞ ¼ 0; ð23Þ

then the infinite layer nþ 1 is simplified into a rigid and rough mechanical boundary condition.

For the limiting case of kz;nþ1 ! 0, substituting kz;nþ1 ! 0 into (22) yields
�vzmðn; Zn; sÞ ¼ 0; ð24aÞ

then the infinite layer nþ 1 is simplified into an impermeable hydraulic boundary condition.

For the limiting case of kz;nþ1 ! 1, substituting kz;nþ1 ! 1 into (22) yields
�pmðn; Zn; sÞ ¼ 0; ð24bÞ

then the infinite layer nþ 1 is simplified into a permeable hydraulic boundary condition.

3.2. Continuity condition

The layers are perfectly bonded with the following interfacial continuity conditions for any interface

between the jth layer and (jþ 1)th layer
XmðZ�
j Þ ¼ XmðZþ

j Þ; YmðZ�
j Þ ¼ YmðZþ

j Þ: ð25Þ
3.3. Solutions of boundary vectors Xm(0), Xm(Zn) and Ym(0), Ym(Zn)

By using Eqs. (18) and (19) and the continuity conditions (25) between any two connected layers we can

express the vectors XmðZi�1Þ, XmðZiÞ, XmðZi�1Þ, YmðZiÞ by the vectors at z ¼ 0 (i.e. Xmð0Þ, Ymð0Þ) and z ¼ Zn
(i.e. XmðZnÞ, YmðZnÞ) as
XmðZi�1Þ ¼ Ti�1ðHi�1Þ � � �T2ðH2ÞT1ðH1ÞXmð0Þ; ð26aÞ

XmðZiÞ ¼ Tiþ1ð�Hiþ1ÞTiþ2ð�Hiþ2Þ � � �Tn�1ð�Hn�1ÞTnð�HnÞXmðZnÞ; ð26bÞ

YmðZi�1Þ ¼ Si�1ðHi�1Þ � � �S2ðH2ÞS1ðH1ÞYmð0Þ; ð27aÞ

YmðZiÞ ¼ Siþ1ð�Hiþ1ÞSiþ2ð�Hiþ2Þ � � �Sn�1ð�Hn�1ÞSnð�HnÞYmðZnÞ; ð27bÞ

and the four vectors XmðZi�1Þ, XmðZiÞ, YmðZi�1Þ, YmðZiÞ should satisfy the following equations according to

Eqs. (20a) and (20b):
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XmðZiÞ ¼ TiðHiÞXmðZi�1Þ þ TiðZi � hqÞQXmðn; sÞ; ð28aÞ
YmðZiÞ ¼ SiðHiÞYmðZi�1Þ þ SiðZi � hqÞQYmðn; sÞ; ð28bÞ
where QXmðn; sÞ ¼ 0; �qzmðn; sÞ; 0; 0; �qvzmðn; sÞ; 0f gT and QYmðn; sÞ ¼ 0; �qhzmðn; sÞf gT.
Substituting Eqs. (26a), (26b) and (27a), (27b) into Eqs. (28a) and (28b), respectively, we get
Tiþ1ð�Hiþ1ÞTiþ2ð�Hiþ2Þ � � �Tn�1ð�Hn�1ÞTnð�HnÞXmðZnÞ
¼ TiðHiÞTi�1ðHi�1Þ � � �T2ðH2ÞT1ðH1ÞXmð0Þ þ TiðZi � hqÞQXmðn; sÞ; ð29aÞ
Siþ1ð�Hiþ1ÞSiþ2ð�Hiþ2Þ � � �Sn�1ð�Hn�1ÞSnð�HnÞYmðZnÞ
¼ SiðHiÞSi�1ðHi�1Þ � � �S2ðH2ÞS1ðH1ÞYmð0Þ þ SiðZi � hqÞQYmðn; sÞ: ð29bÞ
By using the matrix behavior Tð�zÞ ¼ TðzÞ½ ��1
and Sð�zÞ ¼ SðzÞ½ ��1

we can change Eqs. (29a) and (29b)

into
XmðZnÞ ¼ Mx � Xmð0Þ þNx; YmðZnÞ ¼ My � Ymð0Þ þNy ; ð30Þ
where the matrices Mx ¼ TnðHnÞ � � �TiðHiÞ � � �T1ðH1Þ, Nx ¼ TnðHnÞ � � �Tiþ1ðHiþ1ÞTiðZi � hqÞQXmðn; sÞ, and
My ¼ SnðHnÞ � � �SiðHiÞ � � � S1ðH1Þ, Ny ¼ SnðHnÞ � � �Siþ1ðHiþ1ÞSiðZi � hqÞQYmðn; sÞ.

According to Eq. (30) and the regularity conditions in Eq. (22), we have
unþ1Mx � Xmð0Þ þ unþ1Nx ¼ 0; wnþ1My � Ymð0Þ þ wnþ1Ny ¼ 0: ð31Þ
By utilizing the four known boundary variables at the top of the media included in Eqs. (21a)–(21c),
we can solve the other four unknown boundary variables in vectors Xmð0Þ, Ymð0Þ from Eq. (31). Then from

Eq. (30), we can obtain vectors XmðZnÞ, YmðZnÞ.
3.4. Solutions of vectors Xm(z), Ym(z) in the domain which is bounded by 06 z6 hq

For Zk�1 6 z < Zk and 06 z6 hq, we can express the vectors XmðzÞ and YmðzÞ in the multilayered half

space in terms of the vectors at z ¼ 0 (i.e. Xmð0Þ and Ymð0Þ) via the forward transfer matrix technique.
By using the continuity conditions (25), we obtain
XmðzÞ ¼ Tz1ðzÞXmð0Þ; YmðzÞ ¼ Sz1ðzÞYmð0Þ; ð32Þ
where Tz1ðzÞ ¼ Tkðz� Zk�1ÞTk�1ðHk�1Þ � � �T1ðH1Þ and Sz1ðzÞ ¼ Skðz� Zk�1ÞSk�1ðHk�1Þ � � �S1ðH1Þ.
3.5. Solutions of vectors Xm(z) and Ym(z) in the domain which is bounded by hq< z6 Zn

For Zm�1 6 z < Zm and hq < z6 Zn, we can express the vectors XmðzÞ and YmðzÞ in the multilayered half

space in terms of the vector at z ¼ Zn (i.e. XmðZnÞ and YmðZnÞ) via the backward transfer matrix technique.
By using the continuity conditions (25), we get
XmðzÞ ¼ Tz2ðzÞXmðZnÞ; YmðzÞ ¼ Sz2ðzÞYmðZnÞ; ð33Þ
where Tz2ðzÞ ¼ Tmðz� ZmÞTmþ1ð�Hmþ1Þ � � �Tnð�HnÞ and Sz2ðzÞ ¼ Smðz� ZmÞSmþ1ð�Hmþ1Þ � � � Snð�HnÞ.
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3.6. Solutions of vectors XmðzÞ and YmðzÞ in the domain which is bounded by Zn < z < þ1

For Zn < z < þ1, to guarantee the boundedness of the solution, the function of exponential growth

must vanish in the transfer matrix. Therefore, the vectors XmðzÞ and YmðzÞ can be expressed in terms of the
vectors at z ¼ Zn (i.e. XmðZnÞ and YmðZnÞ) as
XmðzÞ ¼ Tz3ðzÞXmðZnÞ; YmðzÞ ¼ Sz3ðzÞYmðZnÞ; ð34Þ
where matrices Tz3ðzÞ ¼ T0
nþ1ðz� ZnÞ and Sz3ðzÞ ¼ S0

nþ1ðz� ZnÞ. Transfer matrices T0
nþ1ðz� ZnÞ and

S0
nþ1ðz� ZnÞ are calculated according to Appendix A with chnz, shnz and chgz, shgz replaced by e�nz=2,

�e�nz=2 and e�gz=2, �e�gz=2, respectively.

3.7. Solutions of vectors Xmðr; z; tÞ and Ymðr; z; tÞ in the physical domain

By performing inverse Hankel–Laplace transforms to Eqs. (32)–(34), we can obtain the solutions of
Xmðr; z; tÞ and Ymðr; z; tÞ in the physical domain.

A numerical method for evaluating inverse Hankel transform is presented. The function JmðnrÞ is wave
function, and converges very slowly, therefore the semi-infinite integral of the inverse Hankel transform

is discretized into a set of intervals according to the zero points of the function JmðnrÞ
eXmðr; z; sÞ ¼
Z n1

0

nJmðnrÞXmðn; z; sÞdn þ
X1
m¼1

Z nmþ1

nm

nJmðnrÞXmðn; z; sÞdn; ð35aÞ

eYmðr; z; sÞ ¼
Z n1

0

nJmðnrÞYmðn; z; sÞdn þ
X1
m¼1

Z nmþ1

nm

nJmðnrÞYmðn; z; sÞdn; ð35bÞ
where n1; n2; . . . ; nn; . . . are the zero points of the function JmðnrÞ, each term on the right side of Eqs. (35a)

and (35b) can be integrated based on an adaptively iterative Simpson’s (i.e. 3-point Gauss integration)

quadrature technique. Enough accuracy for the semi-infinite integral can be obtained by taking the initial

seven to eight terms in Eqs. (35a) and (35b).

By using a numerical scheme of Crump’s method, solutions in the time domain can be obtained by

inverting the solutions in the Laplace transform domain such as equations in (35a) and (35b) with high

efficiency and accuracy.
4. Parametric study and numerical results

The numerical results of primary interest to geotechnical applications relate to the evaluation of the soil

surface subsidence and excess pore pressure induced by the external load. In this section, example 1

compares the results obtained from the analysis of the same problem by using the solution in this paper and

the solution presented in paper by Booker and Small (1987). Example 2 is presented to investigate the

influences of anisotropy of permeability and compressibility of pore fluid on the subsidence at point with
r ¼ z ¼ 0 and excess pore pressure along the line with r ¼ 0 of a homogeneous single layer. Example 3 is

given to show the efficiency of the present study to calculate a multilayered half space.

4.1. Example 1: Validation of the solutions

A consolidation problem is studied to compare the efficiency and accuracy of the proposed procedure

against other existing results. A two-layered soil loaded by circular and uniform load as shown in Fig. 3 is
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Fig. 3. A two-layered system subjected to circular and uniform load.
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examined, the permeability of the two layers is isotropic, and the pore fluid is incompressible. The ratio of

the permeability between layer A and layer B is kA=kB ¼ 4 and the ratio of the shear modulus between layer

A and layer B is lA=lB ¼ 1=4, Poisson’s ratio was chosen to be m ¼ 0:3 for both layers.

Excess pore pressure along the central line with r ¼ 0 at three different time factors

T ¼ kAlAt=a
2 ¼ 0:0015, 0.0155, 0.0555 is presented in Fig. 4. Good agreement can be observed between

results by this study and results by Booker and Small (1987).
4.2. Example 2: Parametric study for a single soil layer

A homogeneous single layer with free drainage surface overlying a rigid, rough and impermeable base is

here studied, the soil layer is loaded by circular and uniform load q with radius a, and the thickness of the

soil layer is H ¼ a. The influence of the anisotropy of the permeability and the compressibility of the pore

fluid is investigated.

(1) Effects of hydraulic anisotropy. Hydraulic anisotropy, c2 ¼ kr=kz, describes the ratio of the horizontal

permeability coefficient to the vertical permeability coefficient. For the fixed value of b ¼ b0 ¼ 4:5� 10�4

MPa�1 (this value corresponds to true bulk modulus of elasticity of water) and m ¼ 0:25, four values of

c2 ¼ ð0:01; 1; 10; 100Þ are selected to study the influence of c2 on the consolidation.
The calculated dimensionless subsidence lwð0; 0; T Þ=qa versus the dimensionless time factor T ¼ kzlt=a2

is illustrated in Fig. 5, and the calculated dimensionless pore pressure p=q versus the dimensionless depth

z=H at three different time factors T ¼ 0:001, 0.01, 0.1 is illustrated in Fig. 6(a)–(c). Consolidation process is

observed to be faster with the increase of c2, this is because soil with bigger c2 is more permeable, and excess
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Fig. 6. Influence of permeability anisotropy parameter c2 on excess pore water pressure along the central line.
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pore pressure dissipates faster. Besides it is found from Fig. 5 that the consolidation with different c2 has the
same initial and final settlement.

(2) Effects of compressibility of pore fluid. For the fixed values of c2 ¼ 1 and m ¼ 0:25, four values

of b ¼ ð1; 100; 300; 1000Þb0 (which corresponds to saturation degree Sr ¼ 100%, 99.55%, 98.65%, 95.5%,

see Eq. (1c)) are selected to study the influence of compressibility of pore fluid on the consolidation, Kw is

taken as 2.22 · 103 MPa, Pw0 is absolute water pressure (taken to be 0.1 MPa).

The calculated dimensionless subsidence lwð0; 0; T Þ=qa versus the dimensionless time factor T ¼ kzlt=a2

is illustrated in Fig. 7, and the calculated dimensionless pore pressure p=q versus the dimensionless depth

z=H at three different time factors T ¼ 0:001, 0.01, 0.1 are illustrated in Fig. 8(a)–(c). From Fig. 7 it can be
seen that with the increase of the compressibility of the pore fluid, the final settlement is the same while the

initial settlement increases. Fig. 8(a)–(c) show that the pore pressure dissipates faster with the increases

of pore fluid compressibility.



1E-4 1E-3 1E-2 1E-1 1E+0 1E+1
T

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

µw
(0

,0
,T

)/q
a

γ2   =1

β=β
0

β=100β0

β=300β
0

β=1000β
0

Fig. 7. Influence of pore fluid compressibility b on time-settlement behavior.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p/q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p/q p/q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

z/
H

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

z/
H

z/
H

(a) (b) (c)T=0.001 T=0.01 T=0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T=0.1, γ 2  =1

β

β

β

=β0

 =100β0

=300β0

β=1000β0

T=0.01, γ 2  =1

β

β

β

=β0

 =100β0

=300β0

β=1000β0

T=0.001, γ 2  =1

β

β

β

=β0

 =100β0

=300β0

β=1000β0

Fig. 8. Influence of pore fluid compressibility b on excess pore water pressure along the central line.

4580 G.J. Chen / International Journal of Solids and Structures 41 (2004) 4567–4586
The above consolidation behavior related to compressibility of pore fluid can be explained as: after
loading, the initial excess pore pressure generated in soil layer is the same, so for soil with bigger pore fluid

compressibility, its volume becomes smaller which results in bigger initial settlement.
4.3. Example 3: Analysis of a multilayered half space

In order to illustrate the efficiency of the present analytical method to calculate the multilayered soil, a

five-layered soil with free drainage surface overlying a homogeneous half space is here investigated, and the

external uniform and circular load with diameter 5a is applied at soil surface. Soil depth, shear modulus,

permeability coefficient, Poisson’s ratio, degree of permeability coefficient, compressibility of pore fluid

are shown in Fig. 9.



Fig. 9. A five-layered soil overlying half space subjected to circular and uniform load.
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The dimensionless subsidence of point O is defined as l0wð0; 0; T Þ=qa, and dimensionless time factor is
defined as T ¼ k0l0t=a

2. Selected results are presented in Fig. 10, and different permeability coefficient ratios

a ¼ 10�3, 10�1, 1, 101, 103 of the half space are selected. It is observed that the permeability of the half space

has great influence on the settlement history, and with the increase of permeability coefficient of the half

space consolidation becomes faster.

The above calculation at any point takes less than three seconds of CPU time for a Pentium III 1000

MHz PC.
5. Conclusions

In this paper, an analytical solution for multilayered poroelastic half space subjected to external
load has been presented by utilizing state vector method, Laplace–Hankel integral transforms
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techniques and transfer matrix method. The permeability anisotropy and pore fluid compressibility are

considered in the solution. The multilayered media with finite thickness is a limit case of this

study.

The correctness of the present study is confirmed from the analysis of the same problem by using the
results calculated by this method and other available results.

For a single soil layer, a group of numerical results are provided to examine the roles of perme-

ability anisotropy, pore fluid compressibility on the consolidation process. These numerical results

show that (i) The anisotropy of permeability does not have influence on the initial and final settle-

ment, but it has much influence on the consolidation process; (ii) with the increase of the pore fluid

compressibility, the soil will have bigger initial settlement, but it does not have effect on the final

settlement. It may therefore be concluded that anisotropy of the permeability, compressibility of pore

fluid must be properly considered if reasonable prediction of the consolidation process is to be ob-
tained.

The analysis of a multilayered soil shows the high efficiency of the present method, and shows that

the hydraulic behavior of the underlying half space has significant influence on the consolidation pro-

cess.
Acknowledgements

The support of the European Commission, within the framework of the 5th European Research Pro-

gram, via the ‘‘Prototype Repository Project’’, FIS5-1999-00217 involving Dr Chen Guangjing is gratefully

acknowledged.

Appendix A. Elements of transfer matrices T and S

A.1. Elements of transfer matrix T
T11 ¼ 2lnT12 þ chnz;

2lnT12 ¼
d2

2lkz
s/2

0 chnz½ � chgz� þ /1nzshnz;

T13 ¼
d
2l

/0 chnz½ � chgz�;

T14 ¼
d
2

/2shnz�
d2

2lkz

sn
g

/2
0shgzþ /1nzchnz;

2lnT15 ¼ T14 þ shnz;

T16 ¼ � d
2lkz

/0

n
shnz
�

� n
g
shgz



;

T21
2ln

¼ �2lnT12;

T22 ¼
T21
2ln

þ chnz;
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T23
2ln

¼ �T13;

T24
2ln

¼ T25 þ shnz;

T25 ¼ �T14;

T26
2ln

¼ �T16;

T31 ¼ � d
kz
s/0 chnz½ � chgz�;

2lnT32 ¼ T31;

T33 ¼ chgz;

T34 ¼ � d
kz
s/0 shnz
�

� n
g
shgz



;

2lnT35 ¼ T34;

T36 ¼ � 1

kzg
shgz;

T41 ¼
d
2

/3shnzþ
d2

2lkz

sg
n

/2
0shgz� /1nzchnz;

2lnT42 ¼ T41 þ shnz;

T43 ¼ � d
2l

/0 shnz
�

� g
n
shgz



;

T44 ¼ 2lnT45 þ chnz;

T45 ¼ �T12;

T46 ¼
d

2lkz

/0

n
chnz½ � chgz�;

T51
2ln

¼ T52 þ shnz;

T52 ¼ �T41;

T53
2ln

¼ �T43;
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T54
2ln

¼ �2lnT45;

T55 ¼
T54
2ln

þ chnz;

T56
2ln

¼ �T46;

T61 ¼ ds/0n shnz
�

� g
n
shgz



;

2lnT62 ¼ T61;

T63 ¼ �kzgshgz;

T64 ¼ ds/0n chnz½ � chgz�;

2lnT65 ¼ T64;

T66 ¼ chgz:
where d ¼ 1�2m
1�m , /0ðn; sÞ ¼ n

g2�n2
, /1ðn; sÞ ¼ 1

2ð1�mÞ 1þ ð1�2mÞ2
2lð1�mÞkz

s
g2�n2

h i
, /2ðn; sÞ ¼ 1� 1�2m

2lð1�mÞkz
s g2�3n2ð Þ

g2�n2ð Þ2
and

/3ðn; sÞ ¼ 1� ð1�2mÞ
2lð1�mÞkz

s g2þn2ð Þ
g2�n2ð Þ2.
A.2. Elements of transfer matrix S
S11 ¼ S22 ¼ chnz; lnS12 ¼
S21
ln

¼ shnz:
Appendix B. Formulation of matrices un+1 and wn+1 for layer n+1

For layer nþ 1 with z > Zn, by using forward transfer matrix method, we obtain vectors XmðzÞ and YmðzÞ
as
T11 T12 T13 T14 T15 T16
T21 T22 T23 T24 T25 T26
T31 T32 T33 T34 T35 T36
T41 T42 T43 T44 T45 T46
T51 T52 T53 T54 T55 T56
T61 T62 T63 T64 T65 T66

0BBBBBB@

1CCCCCCA
nþ1;z�Zn

�umm

�rzm
�pm
�wm
�smzm

�mzm

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
z¼Zn

¼

�umm

�rzm
�pm
�wm
�smzm

�mzm

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
z>Zn

; ðB:1aÞ

S11 S12
S21 S22


 �
nþ1;z�Zn

�uhm
�shzm

� �
z¼Zn

¼ �uhm
�shzm

� �
z>Zn

: ðB:1bÞ
The natural regularity conditions require the displacement and water flow velocity should reduce to zero
and the stresses and pore water pressure should be bounded as z! þ1. Then we get
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�umm

�wm
�mzm

8<:
9=;
z¼Zn

¼ � lim
z!1

T11 T14 T16
T41 T44 T46
T61 T64 T66

0@ 1A�1

nþ1;z�Zn

T12 T13 T15
T42 T43 T45
T62 T63 T65

0@ 1A
nþ1;z�Zn

�rzm
�pm
�smzm

8<:
9=;
z¼Zn

; ðB:2aÞ
lim
z!1

S11 S12ð Þnþ1;z�Zn
�uhm
�shzm

� �
z¼Zn

¼ 0: ðB:2bÞ
From Eqs. (B.2a) and (B.2b), we get
unþ1XðZnÞ ¼ 0; ðB:3aÞ
wnþ1YðZnÞ ¼ 0; ðB:3bÞ
where
unþ1 ¼
1

D1 � 1

1 D1

2lnþ1n
D2

2lnþ1n
0 � 1

2lnþ1n
0

0 � 1
2lnþ1n

� D2

2lnþ1n
1 D1

2lnþ1n
0

0 s D2

2lnþ1n
ð1� D3Þkz;nþ1gnþ1 0 �s D2

2lnþ1n
1

0B@
1CA; ðB:4aÞ
wnþ1 ¼ 1;
1

lnþ1n


 �
; ðB:4bÞ
and D1 ¼ dnþ1

4
2/3;nþ1 þ

gnþ1

n ð/2;nþ1 � /3;nþ1Þ
� �

, D2 ¼ dnþ1n/0;nþ1
gnþ1

n � 1
h i

, D3 ¼ dnþ1

4

�
2/2;nþ1 � n

gnþ1
ð/2;nþ1�

/3;nþ1Þ
�
.
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