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Abstract

This paper presents analytical solutions of consolidation for poroelastic and multilayered half space, and anisotropy
of the permeability and the compressibility of the pore fluid are considered. State vector method together with Laplace—
Hankel transform techniques are used to solve the basic governing equations, and obtain the transfer matrix in a clearly
arranged way. Forward and backward transfer matrix techniques are utilized in the analytical formulation of solutions
for the multilayered half space. A numerical inversion scheme of Crump’s method is adopted to obtain time-domain
solution. Numerical results are presented for a single homogeneous soil layer and a multilayered half space, and they
illustrate the influences of the anisotropy of permeability and the compressibility of the pore fluid on the consolidation
of the soils.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress-induced flow of interstitial fluid in porous media has been suggested as accounting for a
variety of phenomena encountered in geomechanics. The general theory of a porous media taking into
account the coupling between the solid and fluid stresses and strains is presented in the pioneering work of
Biot (1941).

In many cases, natural soils have been created through a sedimentation process that determines a typical
soil fabric in which horizontal stratification planes can be distinguished. This process gives the soil mass a
marked degree of anisotropy so that the permeability is different in horizontal and vertical directions. Soil
layers which are created in different geological conditions may have apparently different behavior of
poroelasticity and permeability. Therefore it is necessary to take into account the anisotropy of perme-
ability and layering behavior of the media.

Tel.: +34-93-401-7252; fax: +34-93-401-7251.
E-mail address: chen.guangjing@upc.es (G.J. Chen).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.03.019


mail to: chen.guangjing@upc.es

4568 G.J. Chen | International Journal of Solids and Structures 41 (2004) 45674586

Compressibility of the pore fluid is important, and it is considered in this paper under the following two
cases of consolidation:

(1) Consolidation of soil with high saturation degree. Many practical problems are involved with the
consolidation of partially saturated soil, such as earth dam and embankment built of three-phase com-
pacted clay, and landfills including or producing gas (Wentz, 1989). An important and frequently
encountered special case is that in which the degree of saturation is high (approximately more than 70%) so
that the liquid phase becomes continuous while the gas phase becomes discontinuous and occluded in the
form of bubbles in the liquid phase, and the surface tension maintains the differential pressure between pore
gas and pore water pressure (Pietruszczzak and Pande, 1996). As the saturation degree is further increased
the bubbles and pore water behave as a “homogeneous compressible fluid” flowing under the pore water
pressure gradient, surface tension effect appears to be unimportant, and this condition prevails at degree of
saturation greater than about 85% (Koning, 1963; Sparks, 1963; Schuurman, 1966; Chang and Duncan,
1983; Okusa, 1985).

With neglect of gas solubility in water which appears to be justified, the compressibility of the pore fluid
mixture f§ is given by (Pietruszczzak and Pande, 1996)

B:l—sr—ﬁ-&, S, > 70%, (la)
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where K and K, are the average bulk moduli of pore fluid mixture and air free water, respectively, S, is pore
water saturation degree, P, is the total gas pressure, T is the surface tension force, and p, is the average
pore size.

By ignoring the effect of surface tension (P,y = P,), the compressibility of the mixture is approximately
represented by (Koning, 1963; Schuurman, 1966; Fredlund, 1976; Okusa, 1985)

s 1=
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where P, is absolute pore water pressure.
A simple analysis by Verruijt (1969) indicates an upper bound for the compressibility of the pore fluid
mixture

1
F=x

S, > 85%, (1b)
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this condition prevails at degree of saturation with 1 —S, < 1, and it will be applied in our following
analysis. This condition has been applied by many other researchers (e.g. Madsen, 1978; Yamamoto et al.,
1978; Jeng and Seymour, 1997; Yang and Sato, 2001). From Eq. (1¢), it can readily be shown that even a
very small amount of gas in soil will dramastically reduce the bulk modulus of fluid.

The importance of pore fluid compressibility for consolidation problem has been demonstrated by many
researchers. Cheng and Liggett (1984) concluded that compressibility of pore fluid would drastically alter
the soil behavior in both the consolidation process and the pore pressure distribution. Booker and Carter
(1987) demonstrated that the compressibility of the pore fluid can have a significant influence on the rate of
consolidation of the soil around the point sink and thus on the settlement of the surface of the half space.
Yue et al. (1994) presented that the presence of a compressible pore fluid reduces the generation of excess
pore water pressure in the poroelastic seabed layer. Besides, its significance has also been indicated in
consolidation problem under ocean wave loading (Madsen, 1978; Okusa, 1985; Jeng and Seymour, 1997) or
earthquake excitation (Yang and Sato, 2001).

(2) Consolidation of saturated porous rock. For the media of water-saturated rock, pore water is not
effectively incompressible. In many cases, the stiffness of the porous rock is much larger than that of the air
free water, therefore the compressibility of pore fluid should be considered (Skempton, 1954).

1-8 <1, (Ic)
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Analytical solutions related to a poroelastic medium consolidation have been obtained by many
researchers including Gibson et al. (1970), Booker (1974), Booker and Small (1982a,b, 1987), Vardoulakis
and Harnpattanapanich (1986), Harnpattanapanich and Vardoulakis (1987) and Senjuntichai and Ra-
japakse (1995). In almost all these investigations, it was assumed that the permeability is isotropic, the pore
fluid is incompressible, and the medium has finite thickness. Such assumption made it impossible to ana-
Iytically examine the roles of anisotropy of permeability and compressibility of pore fluid on the consoli-
dation process, besides, the assumption that the poroelastic medium has finite thickness with completely
permeable or impermeable hydraulic base and completely rigid and rough mechanical base is not realistic
for most real cases.

In this paper our study will be focused on the development of the analytical solutions for the consoli-
dation of multilayerd poroelastic media with anisotropic permeability, compressible pore fluid (1 — S, < 1)
and infinite thickness. Firstly, an efficient state vector method (Zhong et al., 1995; Chen et al., 1998; Chen
and Zhao, 1999; Chen, 2003) is adopted to re-express the basic governing equations as two matrix ordinary
differential equations with respect to two state vectors composed of displacement, stress, pore water
pressure and superficial velocity of the pore fluid. By applying Laplace-Hankel transforms to the matrix
differential equations and employing Cayley—Hamilton theorem, the matrix equations are solved and
transfer matrix between state vectors at different depths (z) is obtained in Laplace—-Hankel transform do-
main. Secondly, forward and backward transfer matrix methods are utilized to get the analytical solutions
for a multilayered poroelastic media. Thirdly the inversions of Hankel and Laplace transforms should be
performed to obtain the solutions in the physical domain. A numerical inversion scheme of Crump’s
method is adopted to obtain time-domain solution. Finally, based on the analytical solutions, numerical
results are presented to study a single soil layer and examine the influence of anisotropy of permeability and
compressibility of pore fluid on consolidation, a multilayered half space is investigated in order to show the
efficiency of the present study.

Therefore, the main objectives of this paper can be summarized as follows: (1) to present an efficient
formulation for the development of analytical solutions governing the consolidation problem; (2) to extend
the analytical modeling of consolidation to include the anisotropy of permeability and compressibility of
pore fluid; and (3) to extend the analytical modeling of media with finite thickness to infinite half space.

2. Governing equations and solutions

Consider a homogeneous poroelastic layer with high saturation degree and infinite in horizontal extent.
The cylindrical polar coordinate system (7, z, ) is here used. The load q., g.., qs. is applied at depth & below
the surface of the layer with thickness H, and the layer extends a further distance H — 4 below the loading
surface (see Fig. 1).

o r
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Yz

Fig. 1. A homogeneous poroelastic layer subjected to external load.



4570 G.J. Chen | International Journal of Solids and Structures 41 (2004) 45674586

2.1. Static equilibrium equations

In the absence of increase in body forces, static equations of equilibrium with respect to conventional
cylindrical polar coordinate system take the form

0, | Or (Tn arrz 190t

a@r + :_ +ar 0 0

012 r,z o 10ty

aar + + + r 669 - 0 (2)
T, r, 10ty

or +7 + + r 00 0’

where o,, 0y, 0, are the total stresses taken as positive in tension and t.,, 7,9, 7,9 are the shear stresses.

2.2. Constitutive equations

Under the hypothesis that the pore water and pore gas are mixed as a “homogeneous pore fluid”, soil
with high saturation degree can be regarded as a quasi-two-phase medium, therefore constitutive equations
take the form

(3)
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where p is the excess average pressure of the “homogeneous pore fluid” taken as positive in compression,

u, v, w are the bulk displacement components in the radial, tangential and vertical directions respectively,
1 is the shear modulus and v is Poisson’s ratio.

2.3. Mass conservation law

For transient flow with different permeability between horizontal and vertical directions, the pore fluid
mass conservation equation of a quasi-static porous medium is given by

Ofou u 10v Ow ap 1 ?p 1op 1% p

—=+—-t+-—=+= =— k| = = — kK — 4

at<6r+r+r60+62>+ ot yw[r<ar2+r6r+r2602 +Z@zz ’ ()
where £/, k! denote the vertical and horizontal permeability coefficients, respectively, n is porosity, y,, is the
unit weight of pore water, ¢ represents time.

2.4. Solutions formulation
Define another four variables as

=1 — _ 1| o
u”_r|: r+ :| Up = r'[ar a0 |’

_ 1| 0(tr) | Oty _ _1|3(tw) _ one
Tz =5 [ &t | Thz = or a0 |

(5)

r

By suitably manipulating Egs. (2)—(5), and applying Laplace transform, we can obtain the following
expressions:
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where an overbar “~ is hereafter used to denote the Laplace transform of a given variable, s is the Laplace
variable, V3 =& +1 24+ L& k= k//y, k. =k!/y, and > =k, /k.
Hereafter we expand the following variables into the Fourier series as:

{u,w,u,} = Z {thmy Winy Uy } COS MO, {v,up} = Z {Unm, tpm } SIN MO, (7a)
m=0 m=0

o0
{0-1‘7 00,0z, Tjz, ‘Evz} = Z {O-rmv O0ms Ozmy Trzm, ‘Evzm} Ccos m@,
m=0

(7b)

00
{Tré); 720, Thz} = Z {Tré)mv T20m, Thzm} sin mea
m=0

{p,v:} =D {Pu, vz} cos MO, (7c)
m=0

{CIz, qrz, qu} = Z {qzma Grzm, qum} cosm0, {qﬁzv th} = Z {QHzmy q/lzm} sin m0, (7d)
m=0

m=0

where Qo = 1 |:a(r‘1rz> + 5%} G = — 1 [5@%) _ ai}

r or r or 00

By substituting Egs. (7a)—(7c) into Eqgs. (6a) and (6b), we get the following two matrix partial differential
equations:

Xu(r,z,8) = Ay(r,8) X (7, 2,8), (8a)

—Y,(r,z,5) = Bu(r,s)Yu(r,z,s), (8b)

where im(V,Z,S) = [ﬁvm(r,z,s),&Zm(r,z,s)7]3m(r,z,s)7fvm(r,z,s),%L.Zm(r,z,s),Tizm(r,z,s)]T, and ?m(r,z,s) =

[t (7,2, 8), T (7, 2,5)] ", and matrices A, (r,s) and B,,(r,s) take the form
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0 0 0 -V ;lz 0
0 0 0 0 -1 0
0 0 0 0 0 —kiz
S B e 0 0 0 o
AR 2 00 o
—s 11:2: —s 2}1(’2") Pk V2 — s( i T nﬁ) 0 0 0

mmwz(ﬂgzg) (9)

Z
where V2 =&, +12

r ar r2

By performmg Hankel transforms to Egs. (9a) and (9b), we get two single-order ordinary differential
matrix equations in the Laplace-Hankel transform domain

d%im(i,za s) = A&, 9)X,(&,2,9), (10a)
SVn(E25) = BEs)Val62,9), (10b)

where  X,,(&,2,5) = [tn(&,2,5), Gan(E,2,8), Pu(E,2,8), Wn(E,2,8), Toam (€, 2,8), 0 (&,2,8)]s Yu(&,2,8) =
[ahm(gaza S), f1'12»1(6,27 S)]T, and

X, (& z,5) = / rJ,,,(fr);(m(r,z,s)dr, (r,z,s) / ETn(Er X, (&, 2,5) dE, (11a)
0
Valeizs) = [ (e Tz dn YW@@z/é%WWW?@M (11b)
0 0
where J,,(£r) is the first kind of Bessel function of order m, and
0 0 0 & Lo
0 0 0 0 -1 0
0 0 0 0 0 - ki
A s) =] __v 1-2v 1-2y , 12a
(' ) 1-v 2u(1-v) 2u(1-v) 0 0 0 ( )
ne e kg 0 0 0
el gl g s( s nﬁ) 0 0 0

8= (% o) (12b)

Assuming there is no external load between depth z; and depth z,, solutions of the ordinary differential
matrix Egs. (10a) and (10b) can be written as

Xm(f,ZZ,S) = T(éazZ - Z],S)Xm(i,zl,s), (133)

vm(é;ZZas) = 5(6722 - Zlys)vm(é,zlvs)7 (13b)
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where T(&,z,5) = exp [zA(¢,s)] and S(,z,s) = exp [zB(¢,s)] are named transfer matrices because they
transfer the solutions from depth z; to the depth z, (i.e. calculates the state vectors X(&,z,,s) and Y(&, z3, 5)
from the state vectors X(,z;,s) and Y(¢,z,5)).

The proper equations of the matrices A(¢,s) and B(¢,s) are

(7 — 52)2{& - (vzéz + HJFSZﬁ) } —0, (14a)

—&=0, (14b)

respectively, where 15, /g are eigenvalues of matrices A(&,s) and B(¢,s), respectively. So matrix A(¢,s) has
two equal eigenvalues £, two equal eigenvalues —¢&, and two eigenvalues +#, where

’7:\/“/25 +2((11—v))k+sl’clzﬂ’ (15)

and matrix B(¢,s) has two eigenvalues +¢.
According to Cayley—Hamilton theorem, transfer matrices T and S can be expressed as

T = exp[zA(§, )] = apEgxs + a1 A + aZKQ + a3K3 + a4K4 + a5KS, (16a)

S = exp|zB(&,5)] = boEavs + by B. (16b)

_ The equations which are obtained by substituting the eigenvalues 44 or /p for the matrices A(&,5) and
B(&,s) in Egs. (16a) and (16b) should also be tenable, therefore we have

ch(nz) 1 0 0 # O ao

sh(nz) 0n 0 n 0 »||la

ch(&) | |1 0 & 0o & 0 a

sh(&z) 00 & 0 &Na( (17a)
z-ch(éz) 01 0 32 0 58| |a

z-sh(éz) 0 0 26 0 482 0 as
b() = ChéZ, bl = % (17b)

Transfer matrices T and S are therefore obtained by substituting ay, a;, a,, a3, a4, as (solved from Eq.
(17a)) into Eq. (16a), and (17b) into Eq. (16b). Expressions of the elements of T and S are included in
Appendix A.

As an example, we apply the solutions in Egs. (13a) and (13b) in the soil layer shown in Fig. 1:

(1) Domain 1 (which is bounded by 0 <z < h)
By utilizing the forward transfer matrix technology, we get
X”1(5727‘5‘) (é?z S) m(é,o S) vn‘l(é,z7s) (é?z S) (é?o S) (18)
(2) Domain 2 (which is bounded by % < z< H)
By utilizing the backward transfer matrix technology, we get

im(&:7za S) = T(é,Z - H,S)Xm(é,H7S), vm(azv S) = 5(672 - H7S)vm(é7H7S)' (19)

The solution at each given point of the domain by using Eqs. (18) and (19) requires the knowledge of the
state vectors of the transformed variables at the top of the layer, X,,(&,0,s), Y,,(£,0,s) and at the base of
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the layer, X, (¢, H,s), Y,.(& H,s). For the case in Fig. 1, six variables should be known as boundary
conditions, the remaining six variables must be calculated by the following two relationships that exist
between the state vectors X(&,0,s), Y(&,0,s) and X(&, H,s), Y(&, H,s)

Xm(éaHvs) =T(&H,5)Xu(E,0,5) + T(EH — h,5)Qun(E, ), (20a)
Y. (& H,s) =S(EH,5)Y,(E,0,5) + S(E,H — h,s)Quu(&,5), (20b)
where Qy(&,5) = {0,G.m(¢,5),0,0,Gun(&,5),01" and Qy,(E,s) = {0, qhzm(f s)H.

Not_e that, in the following, we will simplify Xm(f 2,8), T(&,2,5), Yu( z,s),S(& 2,5), etc. into i,,,(z),
T(Z)9 Ym(Z), S(Z), etc.

3. Solutions of multilayered poroelastic half space

The problem considered here is a multilayered poroelastic half space with high saturation degree and
loaded by ¢, g,-, qo- at depth i, below the surface (see Fig. 2). The multilayered half space consists of n + 1
perfectly bonded poroelastic layers which are infinite in horizontal extent. Each layer is homogeneous, the
load is located in the ith soil layer occupying the region Z; | < z < Z; with thickness H; = Z; — Z;_;. For layer
Jj=1,2,...,n, it has the thickness H;, the shear modulus y;, Poisson’s ratio v;, compressibility of pore fluid
f; and the permeability parameters k,j, k., y For layer n + 1, it occupies the region Z, < z < 00, and has the
poroelastlc parameters i, 1, Vutis Puii and the permeability parameters &, .1, koni1, 7 -

3.1. Boundary conditions

311 z=0
The surface z = 0 of the multilayered half space is considered as traction free, which takes the following
mechanical boundary conditions in the transform domain

62;71(5; O,S) = fvzm(éyovs) = fhzm(éaoa S) = Oa (218')

(e} T
AR AR AAVATRS =
movi ka2 By 1 H, 71
ZiA

e vie kao % B k g Hy
Zk
q, pAR

Wi Vi kg "/.2 ﬁl¢£¢t¢¢$¢ Hi

Az | Qe !

A
Zj.1
bV kg ¥OB ] H; 7,
j
Zm
Um Vm  Kzm /‘ﬂ\: B m Hem ;
Zn
Zn-1

Bo Vo ka % B n Hn
Zn

Hnet Voot Kzned 7.\7;1 Bres n+1 Hpeq= o0

z

Fig. 2. A multilayered poroelastic half space subjected to external load.
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for a permeable surface, it has the following hydraulic boundary condition

Pn(&,0,5) =0, (21b)
while for an impermeable surface, it has the following hydraulic boundary condition

U.,(£,0,5) = 0. (21c)
312 z=12,

The half space extends to infinity, in which the displacement and water flow velocity fields should reduce
to zero and the stresses and pore pressure should be bounded as z — +oco. Then in order to satisfy such

natural regularity conditions, we have the following equations for vectors X(Z,), Y(Z,):
(Pn-HX(Zn) =0, ‘~|’n+lv(zn) =0, (22)
where the matrices @, (dimensions 3x6) and | (dimensions 1 x2) are derived and defined in Appendix B.
For the limiting case of u,,, — oo, substituting p,,, — oo into (22) yields
avm(€7 st) = wm(£7 st) = ahm(é7 ZVHS) = 07 (23)
then the infinite layer n + 1 is simplified into a rigid and rough mechanical boundary condition.
For the limiting case of k., — 0, substituting k,,.; — 0 into (22) yields
Ezm(éy Zm S) = 07 (243')

then the infinite layer n + 1 is simplified into an impermeable hydraulic boundary condition.
For the limiting case of k., — oo, substituting £, ,.; — oo into (22) yields

Pn(&,Zy,5) =0, (24b)

then the infinite layer n + 1 is simplified into a permeable hydraulic boundary condition.
3.2. Continuity condition

The layers are perfectly bonded with the following interfacial continuity conditions for any interface
between the jth layer and (j + 1)th layer

Xu(Z7) =Xu(Z)), Yu(Z7) =Yu(Z)). (25)

J J

3.3. Solutions of boundary vectors X,,(0), X,,(Z,) and ¥,,(0), ¥Y,.(Z,)

By using Egs. (18) and (19) and the continuity conditions (25) between any two connected layers we can

express the vectors X,,(Z_1), X,(Z), Xuu(Zi—1), Yu(Z:) by the vectors at z = 0 (i.e. X,,(0), Y,,(0)) and z = Z,

(.e. X,u(Z,), Yn(Z,)) as

Xo(Zio1) = Ty (Hioy) - To(Hy) Ty (H)) X, (0), (26a)
Xo(Zi) = Tt (~Hyt) Tio(—Hisz) - Tot (Hy ) Tu(—H,) X, (Z,), (26b)
Yu(Zio1) = Sii(Hi1) -+ Sa(H)S1 (H) Y, (0), (27a)
Yu(Z) = Sict(—Hia1)Siia(—Hia) - - Suct (—Hoo1)Su(—Ha) Yo (Z,), (27b)

and the four vectors X,,(Z;_1), X,,(Z), Yu(Z:_1), Y,.(Z;) should satisfy the following equations according to
Eqgs. (20a) and (20b):
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Xm(Zl) = Ti(l_[l)im(zi—l) +T:(Z — hq)ﬁXm(fvs)a (28a)

vm(Zi) = Sl(l—ll)vm<zl—l) + SZ(ZI - hq)aYm(évs)? (28b)

where 6)(,,1(5, S) = {0, qzm(f7 5)7 07 07 QL‘zm(éa S)v O}T and GYm(év S) = {07 qhzm(ia S)}T'
Substituting Egs. (26a), (26b) and (27a), (27b) into Egs. (28a) and (28b), respectively, we get
Ti+1 (_I{HI)THZ(_[_]HZ) T T,,,l (_anl)Tn(_Hn)im(Zn)
=T:(H)Tio1(Hiy) - To(H) T (H) X (0) + TiZ — hy) Qun (&, 5), (29a)

si+1 (_Hi+1)si+2(_Hi+2) e snfl (_anl)sn(_Hn)Vm (Zn)
= Si(H})Si1(Hin1) -+ Sa(Ha)S1 (H1) Y (0) + Si(Zi — hy)Qu(E, 5). (29b)
By using the matrix behavior T(—z) = [T(z)] " and S(—z) = [S(z)] "' we can change Egs. (29a) and (29b)
into

Xm(Zn) - Mx . Xm(o) + Nxa Ym(Zn) == My : vm(O) + Nyv (30)

where the matrices M, = T,(H,)---T;(H;)--- T1(H;), N, =T,(H,) - - Ti1(Hi) To(Z — hq)axm(f,s), and

My = sn(Hn) ce sx(Hz) T Sl (Hl)a Ny = sn(Hn) to si+1(Hi+l)Si(Zi - hq)QYm(é7S)'
According to Eq. (30) and the regularity conditions in Eq. (22), we have

Pt M, - im(o) + (Pn+le =0, ‘l’n+1My : vm(o) + ‘I’n+1Ny =0. (31)

By utilizing the four known boundary variables at the top of the media included in Egs. (21a)-(21¢),
we can solve the other four unknown boundary variables in vectors X,,(0), Y,,(0) from Eq. (31). Then from

Eq. (30), we can obtain vectors X,,(Z,), Y,.(Z,).

3.4. Solutions of vectors X,,(z), Y, (z) in the domain which is bounded by 0 <z<h,

For 7, 1 <z < Z, and 0<z<h,, we can express the vectors X.,,(z) and Y,,(z) in the multilayered half
space in terms of the vectors at z =0 (i.e. X,,(0) and Y,(0)) via the forward transfer matrix technique.
By using the continuity conditions (25), we obtain

Xm(z) = Tzl (Z)Xm (0)7 vm (Z) = Szl (Z)vm(())a (32)

Where Tzl (Z) = Tk(Z — Zk—l)Tk—l(Hk—l) e T](Hl) and Szl (Z) = Sk(z — Zk_l)Sk_l(Hk_l) e S](Hl)

3.5. Solutions of vectors X,,(z) and Y ,,(z) in the domain which is bounded by h,< z< Z,

For Z,_ <z < Z, and h, < z<Z,, we can express the vectors X,,(z) and Y,,(z) in the multilayered half
space in terms of the vector at z = Z, (i.e. X,,(Z,) and Y, (Z,)) via the backward transfer matrix technique.
By using the continuity conditions (25), we get

X,(2) = Ta(DXu(Z),  Yul2) =S2(2)Yu(Z)), (33)

where T.y(2) = T(z = Z) Tt (—Hyns1) -+ To(—H,) and S.2(2) = S (z — Zu)Smst (—His1) - - Su(—H,).
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3.6. Solutions of vectors X,,(z) and Y ,(2) in the domain which is bounded by Z, < z < +o0

For Z, <z < +o0, to guarantee the boundedness of the solution, the function of exponential growth
must vanish in the transfer matrix. Therefore, the vectors X,,(z) and Y,,(z) can be expressed in terms of the
vectors at z = Z, (i.e. X,,(Z,) and Y,,(Z,)) as

Xm (Z) = Tz3 (Z)Xm(zn)a vm (Z) = szB (Z)vm (Zn)v (34)

where matrices Ti(z) =T,,,(z—Z,) and S.(z) =S,,,(z — Z,). Transfer matrices T,,,(z—Z2,) and
S,.,(z—Z,) are calculated according to Appendix A with chz, shéz and chyz, shnz replaced by e /2,
—e /2 and e 7 /2, —e ¥ /2, respectively.

3.7. Solutions of vectors X,,(r,z,t) and Y, (r,z,t) in the physical domain

By performing inverse Hankel-Laplace transforms to Eqgs. (32)—(34), we can obtain the solutions of
X, (r,z,t) and Y, (r,z,¢) in the physical domain.

A numerical method for evaluating inverse Hankel transform is presented. The function J,(¢r) is wave
function, and converges very slowly, therefore the semi-infinite integral of the inverse Hankel transform
is discretized into a set of intervals according to the zero points of the function J,,(&r)

~ & Emtl
Xm(F,Z,S) = 5']»1(57') 5 zZ,8 dé"'z / CJ (:r m(E z, S) dé, (358.)
0 <
~ < _ ;,n+1
Y. (r,z,5) = /0 (e Yu(Ems)dE+ / Tu(E)Y(E,2,) dE, (35b)
m=1 Y Cm

where &, &, ..., ¢, ... are the zero points of the function J,,(£r), each term on the right side of Egs. (35a)
and (35b) can be integrated based on an adaptively iterative Simpson’s (i.e. 3-point Gauss integration)
quadrature technique. Enough accuracy for the semi-infinite integral can be obtained by taking the initial
seven to eight terms in Egs. (35a) and (35b).

By using a numerical scheme of Crump’s method, solutions in the time domain can be obtained by
inverting the solutions in the Laplace transform domain such as equations in (35a) and (35b) with high
efficiency and accuracy.

4. Parametric study and numerical results

The numerical results of primary interest to geotechnical applications relate to the evaluation of the soil
surface subsidence and excess pore pressure induced by the external load. In this section, example 1
compares the results obtained from the analysis of the same problem by using the solution in this paper and
the solution presented in paper by Booker and Small (1987). Example 2 is presented to investigate the
influences of anisotropy of permeability and compressibility of pore fluid on the subsidence at point with
r =z = 0 and excess pore pressure along the line with » = 0 of a homogeneous single layer. Example 3 is
given to show the efficiency of the present study to calculate a multilayered half space.

4.1. Example 1: Validation of the solutions

A consolidation problem is studied to compare the efficiency and accuracy of the proposed procedure
against other existing results. A two-layered soil loaded by circular and uniform load as shown in Fig. 3 is
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Fig. 3. A two-layered system subjected to circular and uniform load.
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Fig. 4. Excess pore water pressure along the central line.

examined, the permeability of the two layers is isotropic, and the pore fluid is incompressible. The ratio of
the permeability between layer A and layer B is ks /kg = 4 and the ratio of the shear modulus between layer
A and layer B is u,/pg = 1/4, Poisson’s ratio was chosen to be v = 0.3 for both layers.

Excess pore pressure along the central line with r=0 at three different time factors
T = kappt/a* = 0.0015, 0.0155, 0.0555 is presented in Fig. 4. Good agreement can be observed between
results by this study and results by Booker and Small (1987).

4.2. Example 2: Parametric study for a single soil layer

A homogeneous single layer with free drainage surface overlying a rigid, rough and impermeable base is
here studied, the soil layer is loaded by circular and uniform load ¢ with radius a, and the thickness of the
soil layer is H = a. The influence of the anisotropy of the permeability and the compressibility of the pore
fluid is investigated.

(1) Effects of hydraulic anisotropy. Hydraulic anisotropy, y* = &, /k., describes the ratio of the horizontal
permeability coefficient to the vertical permeability coefficient. For the fixed value of f = f, = 4.5 x 10~
MPa~! (this value corresponds to true bulk modulus of elasticity of water) and v = 0.25, four values of
92 = (0.01, 1, 10, 100) are selected to study the influence of y* on the consolidation.

The calculated dimensionless subsidence uw(0,0, T)/qa versus the dimensionless time factor T = k.ut/a®
is illustrated in Fig. 5, and the calculated dimensionless pore pressure p/g versus the dimensionless depth
z/H at three different time factors 7= 0.001, 0.01, 0.1 is illustrated in Fig. 6(a)—(c). Consolidation process is
observed to be faster with the increase of 72, this is because soil with bigger 7? is more permeable, and excess
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Fig. 6. Influence of permeability anisotropy parameter 7> on excess pore water pressure along the central line.

pore pressure dissipates faster. Besides it is found from Fig. 5 that the consolidation with different y? has the
same initial and final settlement.

(2) Effects of compressibility of pore fluid. For the fixed values of 7> =1 and v = 0.25, four values
of = (1,100,300,1000)p, (which corresponds to saturation degree S, = 100%, 99.55%, 98.65%, 95.5%,
see Eq. (1c)) are selected to study the influence of compressibility of pore fluid on the consolidation, K, is
taken as 2.22x 10° MPa, P,, is absolute water pressure (taken to be 0.1 MPa).

The calculated dimensionless subsidence uw(0,0, T)/qa versus the dimensionless time factor T = k.ut/a’
is illustrated in Fig. 7, and the calculated dimensionless pore pressure p/q versus the dimensionless depth
z/H at three different time factors 7 = 0.001, 0.01, 0.1 are illustrated in Fig. 8(a)—(c). From Fig. 7 it can be
seen that with the increase of the compressibility of the pore fluid, the final settlement is the same while the

initial settlement increases. Fig. 8(a)—(c) show that the pore pressure dissipates faster with the increases
of pore fluid compressibility.
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Fig. 8. Influence of pore fluid compressibility  on excess pore water pressure along the central line.

The above consolidation behavior related to compressibility of pore fluid can be explained as: after
loading, the initial excess pore pressure generated in soil layer is the same, so for soil with bigger pore fluid
compressibility, its volume becomes smaller which results in bigger initial settlement.

4.3. Example 3: Analysis of a multilayered half space

In order to illustrate the efficiency of the present analytical method to calculate the multilayered soil, a
five-layered soil with free drainage surface overlying a homogeneous half space is here investigated, and the
external uniform and circular load with diameter Sa is applied at soil surface. Soil depth, shear modulus,

permeability coefficient, Poisson’s ratio, degree of permeability coefficient, compressibility of pore fluid
are shown in Fig. 9.
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Fig. 9. A five-layered soil overlying half space subjected to circular and uniform load.
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Fig. 10. Time-settlement behavior of a five-layered soil overlying a half space with five different values of «.

The dimensionless subsidence of point O is defined as pyw(0,0, T') /qa, and dimensionless time factor is
defined as T = kop,t/a*. Selected results are presented in Fig. 10, and different permeability coefficient ratios
o=1073,10"1, 1, 10!, 103 of the half space are selected. It is observed that the permeability of the half space
has great influence on the settlement history, and with the increase of permeability coefficient of the half
space consolidation becomes faster.

The above calculation at any point takes less than three seconds of CPU time for a Pentium IITI 1000
MHz PC.

5. Conclusions

In this paper, an analytical solution for multilayered poroelastic half space subjected to external
load has been presented by utilizing state vector method, Laplace-Hankel integral transforms
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techniques and transfer matrix method. The permeability anisotropy and pore fluid compressibility are
considered in the solution. The multilayered media with finite thickness is a limit case of this
study.

The correctness of the present study is confirmed from the analysis of the same problem by using the
results calculated by this method and other available results.

For a single soil layer, a group of numerical results are provided to examine the roles of perme-
ability anisotropy, pore fluid compressibility on the consolidation process. These numerical results
show that (i) The anisotropy of permeability does not have influence on the initial and final settle-
ment, but it has much influence on the consolidation process; (ii)) with the increase of the pore fluid
compressibility, the soil will have bigger initial settlement, but it does not have effect on the final
settlement. It may therefore be concluded that anisotropy of the permeability, compressibility of pore
fluid must be properly considered if reasonable prediction of the consolidation process is to be ob-
tained.

The analysis of a multilayered soil shows the high efficiency of the present method, and shows that
the hydraulic behavior of the underlying half space has significant influence on the consolidation pro-
cess.
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Appendix A. Elements of transfer matrices T and S

A.1. Elements of transfer matrix T
Ty = 2uéT, + chiz;

2

0
2péTh, = msqsé[chéz — chnz] + ¢ Ezshiz;

0
Tz = ﬂqso[chéz — chnzl;

b) 6 ¢
T14 = Egbzshﬁz — 2—

S
ik ? (béshnz + ¢ Ezchéz;

2ulTis = Tig + shiz;

o ¢ ¢
T = — _— _—— :
16 k. ¢ {Shfz nshnz ;
Ty )
—2ﬂf = —2ulTy;
_ T ]
I = 2Mf+0h527
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Trs

3

2,“5 13,

T4

2 Ty 4 shéz
2l 25 + shéz;
TIs = —Ta;

T

_— —T .

2/16 165

)
Ty = —k—sqﬁo[chéz — chnzl;

2ulTsy = Ty

Ts3 = chnz;
0

Ty = — —5¢, {shéz — éshnz} ;
k. n

2uéTys = Tia;

1
T36:_k

Z

shnz;
n

5 5
1y = 5 ¢3Shéz +

sn
ik, ? (bgshnz — ¢, Ezchéz,

2uéTy = Ty + shiz;

0 n
Ty = — 2 by | shéz — Lshyz|
43 2 [N {S &z és 772:|a

Tyy = 2pu&Tys + chiz;

Ty = —To;
o
Ty = 2k % [chéz — chnz];
T
— =T héz;
2/16 52+S éza
T52 = _T417

4583
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Tsy

2 e Ts;

2ué uETys;
Ts4

T = — h .

55 2#54—0 &z;

Ts6

—_— —T .

2#5 46,

To1 = 0soé {shéz — Zshnz] ;

2uéTs = Tg;

Tss = —knshnz;

Tos = 0sp&[chéz — chnzl;
2l Tes = Tea;

T66 = Chi’[Z.

—2v 3 -2 _ay  s(n?-38
Where 5 = ll—zv’ ¢0(évs) = 112552’ d)l(évs) = ﬁ 1 +ﬁ m}’ ¢2(€’S) - 1 — i ( )

2p(1—v)k- ("2752)2
_ 1 (-2 s(r+8)
(1)3(576‘) - 1 2u(1=v)k; (;72752)2'

and

A.2. Elements of transfer matrix S

S
S = 8S» = chéz, uES1y = i = shéz.

Appendix B. Formulation of matrices ¢,,, and V., for layer n+1

For layer n + 1 with z > Z,, by using forward transfer matrix method, we obtain vectors X,,(z) and Y,,(z)

as
Ty Th Tis Tw Tis T Uy, Uy
Ly T Ty Ty s T Ozm Ozm
Ty Ty Tz Ty Tzs Tse Dm _ ) DPn (B.1a)
Ty Ty Tz Ty Tns Ty W Wi ’ ’
Tsy Tsy Tsy Tsy Tss Tse Tyzm Tyzm

n+l,z2—2, Vzm z=7Zy Vzm z>7,

Sll S12> ﬁhm — ﬂhm (B lb)
S Sn ) \Tem |y Them S og .

The natural regularity conditions require the displacement and water flow velocity should reduce to zero
and the stresses and pore water pressure should be bounded as z — +o00. Then we get
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-1

Uy Ty Ts Tis T, Tis Tis Ozm
Wi = - ZILI?O Ty Ty Tie Ty Taz Tis DPm ; (B.2a)
Van ) g T Tos Teo ) 1.z \T2 Tes Tss ) 1. 7 \Toem )
lim (Si1 Si2),01. 2 { i } =0. (B.2b)
Z—00 ” " Thzm =7,
From Egs. (B.2a) and (B.2b), we get
9,,1X(Z,) =0, (B.3a)
‘I’n+lv(zn) = 07 (B3b)
where
4 4 |
| 1 2unii g 2un;1 R 0 - zAu,,H : 0
@t =7 7| Tt BETE Do Of (B.4a)
4 4
0 syt (=M 0 —syms

1
=1 — B.4b
‘I’n+l ( ) Ly f) ) ( )

and 4, = 6"11 (2¢3,n+1 +W"TH(¢2,n+1 - ¢34n+1))’ Ay = 0,41€Pg 11 [""gl - 1} , A3 = 5”11 (2¢2,n+1 - ﬁ(ﬁbz,nﬂ_
¢3,n+1)) .
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